2022 Reading List
A much shorter list of books this year, as I’m reading more academic papers instead
Books
- Limbo (Lubrano, 2003)
- The Ethical Algorithm (Kearns & Roth, 2019)
Audiobooks
- Virtual Society (Narula, 2022)
- Black Spartacus (Hazareesingh, 2020)
- Solve For Happy (Gawdat, 2017)
- When Prophecy Fails (Festinger et al, 1956)
- Indistractable (Eyal, 2019)
- Nice Girls Don’t Get the Corner Office (Frankel, 2010)
Papers
- Floridi, L., & Cowls, J. (2019). A Unified Framework of Five Principles for AI in Society. Harvard Data Science Review, 1(1).
- Narayanan, A. & Shmatikov, V. (2008). Robust De-anonymization of Large Sparse Datasets. 2008 IEEE Symposium on Security and Privacy (sp 2008). 111–125.
- Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. PMLR Conference on fairness, accountability and transparency (pp. 77-91).
- Awad, E., Dsouza, S., Kim, R. et al. The Moral Machine experiment. Nature 563, 59–64 (2018).
- Ribeiro, M. T., Singh, S. & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1135-1144.
- Ameisen, E. (2020). (Chapter 11). In Building machine learning powered applications: going from idea to product. First edition. O’Reilly Media, Inc.